储宝句网 >地图 >祝福语 >

小学数学知识点总结归纳

小学数学知识点总结归纳(经典十二篇)

时间:2025-06-06 储宝句网

总结是在某一特定时间段对学习和工作生活或其完成情况,包括取得的成绩、存在的问题及得到的经验和教训加以回顾和分析的书面材料,通过它可以正确认识以往学习和工作中的优缺点,不如我们来制定一份总结吧。那么我们该怎么去写总结呢?以下是小编为大家收集的小学数学知识点总结,希望对大家有所帮助。

小学数学知识点总结归纳 篇1

(一)分数乘法意义:

1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

“分数乘整数”指的是第二个因数必须是整数,不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)

(二)分数乘法计算法则:

1、分数乘整数的计算方法:用分子乘整数的积作分子,分母不变。能约分的可以先约分,再计算。

(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)

(2)约分是用整数和下面的分母约掉公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。

2、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。(分子乘分子,分母乘分母)

(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的'大小不变。

(三)积与因数的关系:

一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b>1时,c>a。

一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b<1时,c

一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b=1时,c=a。

在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

(四)分数混合运算

1、分数混合运算的运算顺序与整数混合运算的运算顺序相同,先算乘法,后算加减法,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:a×(b±c)=a×b±a×c

(五)分数乘法应用题——用分数乘法解决问题

1、求一个数的几分之几是多少?(用乘法)

已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。

2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。

3、求比一个数多(或少)几分之几的数是多少的解题方法

(1)单位“1”的量+(-)单位“1”的量×这个数量比单位“1”的量多(或少)的几分之几=这个数量;

(2)单位“1”的量×[1+这个数量比单位“1”的量多(或少)的几分之几]=这个数量。

小学数学知识点总结归纳 篇2

【时分秒】

1、钟面上有3根针,它们是时针、分针、秒针,其中走得最快的是秒针,走得最慢的是时针。时针最短,秒针最长。

2、钟面上有12个数字,12个大格,60个小格;每两个数之间是1个大格,也就是5个小格。

3、时针走1大格是1小时;分针走1大格是5分钟,走1小格是1分钟;秒针走1大格是5秒钟,走1小格是1秒钟。

4、分针走1小格,秒针正好走1圈,秒针走1圈是60秒,也就是1分钟。

5、时针从一个数走到下一个数是1小时。分针从一个数走到下一个数是5分钟。秒针从一个数走到下一个数是5秒钟。

6、公式(每两个相邻的时间单位之间的进率是60):

1时=60分

1分=60秒

7、常用的时间单位:时、分、秒、年、月、日、世纪等。

1世纪=100年

1年=12个月

【分数的初步认识】

1、几分之一:把一个物体或一个图形平均分成几份,每一份就是它的几分之一。

几分之几:把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。

2、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。

3、比较大小的方法:

①分子相同,分母小的分数反而大,分母大的分数反而小。

②分母相同,分子大的分数就大,分子小的分数就小。

4、分数加减法:

①同分母的分数加、减法的计算方法:同分母分数相加减,分母不变,分子相加、减。

②计算1减几分之几时,先把1写成与减数分母相同的分数,再计算。

5、分数的意义:把一个整体平均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。

6、求一个数是另一个数的几分之几是多少的计算方法:先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)。

【测量】

1、在生活中,量比较短的物品,可以用毫米、厘米、分米做单位;量比较长的物体,常用米做单位;测量比较长的路程一般用千米做单位,千米也叫公里。

2、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。

3、在计算长度时,只有相同的长度单位才能相加减。

4、长度单位的关系式有:

①进率是10:

1米=10分米

1分米=10厘米

1厘米=10毫米

②进率是100:

1米=100厘米

1分米=100毫米

③进率是1000:

1千米=1000米

1公里==1000米

5、当我们表示物体有多重时,通常要用到质量单位。在生活中,称比较轻的物品质量,可以用克做单位;称一般物品的质量,常用千克做单位;计量较重或大物品的质量,通常用吨做单位。

6、相邻两个质量单位的进率是1000。

1吨=1000千克

1千克=1000克

【万以内的加法和减法】

1、读数和写数:

①一个数的末尾不管有一个0或几个0,这个0都不读。

②一个数的中间有一个0或连续两个0,都只读一个0。

2、数的大小比较:

①位数不同的数比较大小,位数多的数大。

②位数相同的数比较大小,先比较这两个数位上的数,如果位上的数相同,就比较下一位,以此类推。

3、求一个数的近似数:看数的后面一位,如果是0~4就用四舍法,如果是5~9就用五入法。

4、被减数是三位数的连续退位减法的运算步骤:

①列竖式时相同数位一定要对齐;

②减法时,哪一位上的数不够减,从前一位退1,在本位上加上10再减;如果前一位是0,则再从前一位退1。

【倍的认识】

1、倍的`意义:要知道两个数的关系,先确定谁是1倍数,然后把另一个数和它作比较,另一个数里有几个1倍数就是它的几倍。

2、求一个数是另一个数的几倍的计算方法:一个数÷另一个数=倍数。

3、求一个数的几倍是多少的计算方法:这个数×倍数=这个数的几倍。

【长方形和正方形】

1、有4条直的边和4个角封闭的图形叫做四边形。

2、四边形的特点:有四条直的边,有四个角。

3、长方形的特点:长方形有两条长,两条宽,四个角都是直角,对边相等。

4、正方形的特点:有4个直角,4条边相等。

5、长方形和正方形是特殊的平行四边形。

6、平行四边形的特点:

①对边相等、对角相等;

②平行四边形容易变形。(三角形不容易变形)

7、封闭图形一周的长度,就是它的周长。

8、公式:

长方形的周长=(长+宽)×2=长×2+宽×2

长方形的长=周长÷2—宽

长方形的宽=周长÷2—长

正方形的周长=边长×4

正方形的边长=周长÷4

【多位数乘一位数】

1、估算:先求出多位数的近似数,再进行计算,如497×7≈3500。

2、

①0和任何数相乘都得0;

②1和任何不是0的数相乘还得原来的数。

3、三位数乘一位数,积有可能是三位数,也有可能是四位数。

4、多位数乘一位数(进位)的笔算方法:

相同数位对齐,从个位乘起,用一位数分别去乘多位数每一位上的数,哪一位上乘得的数积满几十,就向前一位进几,与哪一位相乘,积就写在哪一位下面。

5、一个因数中间有0的乘法:

①0和任何数相乘都得0;

②因数中间有0,用一位数去乘多位数每一位数上的数,与中间的0相乘时,如果后面没有进上来的数,这一位上要用0来占位,如果有进上来的数必须加上。

6、一个因数末尾有0的乘法的简便计算:笔算时,可以把一位数与多位数0前面的那个数字对齐,再看多位数的末尾有几个0,就在积的末尾添上几个0。

7、关于“大约”的应用题:问题中出现“大约”“约”“估一估”“估算”“估计一下”,条件中无论有没有大约都是求近似数,用估算。

8、减法的验算方法:

①用被减数减去差,看结果是不是等于减数;

②用差加减数,看结果是不是等于被减数。

9、加法的验算方法:

①交换两个加数的位置再算一遍;

②用和减一个加数,看结果是不是等于另一个加数。

学习困难的原因

1、学习自觉性较差

初中生学习自觉性较差,缺少解题的积极性,解题时不注重步骤、过程。

2、学习意志薄弱

数学的逻辑性和抽象性很强,知识间联系紧密,对学生的灵活应用能力,分析能力要求很强。如果学生对前面所学的知识掌握不好或未理解的话,就会直接影响深一层次内容的学习,造成知识脱节,跟不上集体学习的进程,在加在自身的毅力薄弱。其结果往往就会产生厌学情绪,放弃数学的学习。

3、无兴趣学习或兴趣低

一部分学生一开始就没有学好数学,导致基础不好,久而久之导致恶性循环;还有些学生认为学数学没用,选择放弃选读,因此成绩变得连“过得去”也难以维持。

4、没有养成良好的数学学习习惯

有些学生边学边玩,注意力不集中,或是思维单一,不能横向思考或纵深思考;又或者不听不记,思维懒惰,粗心大意、马虎等等都是造成错误率高的重要原因。

所以同学们要注意自己是否存在以上问题,要想办法及时解决。

数学的概念

数学概念是人脑对现实对象的数量关系和空间形式的本质特征的一种反映形式,即一种数学的思维形式。在数学中,作为一般的思维形式的判断与推理,以定理、法则、公式的方式表现出来,而数学概念则是构成它们的基础。正确理解并灵活运用数学概念,是掌握数学基础知识和运算技能、发展逻辑论证和空间想象能力的前提。

小学数学知识点总结归纳 篇3

第一课时:什么是周长

【知识点】:

1、为学生创设具体的数学情境,通过描一描树叶的边线,摸一摸课桌数学书的边线,再量一量自己的腰围和头围,从而知道了一个图形一周的长度就是这个图形的周长。

2、学生在动手操作中,可以画出并能计算出图形的周长。

第二课时 游园

【知识点】:

1、为学生创设游园的情境,引导学生体验用不同的方法去计算小公园的周长。就是把围成小公园的所有线段加在一起。

2、算一算中出现了4种不同的图形,鼓励学生用多种方法计算,为后面学习长方形、正方形周长的计算作好铺垫。

第三课时 花边有多长

【知识点】:

1、学生要明确已知的条件和问题,然后先独立思考,再在小组中交流自己的想法,鼓励学生用不同的方法来解决问题,从而发现(长+宽)﹡2是求长方形周长最简便的方法。不必用公式化的算式去约束学生,他们可以自己喜欢的方法去计算。

2、在做一做中出现的两个不同的长方形可以让学生用自己喜欢的方法求周长。

第四课时 地砖的周长

【知识点】:

1、学生要明确已知条件和问题,利用学习长方形周长的知识经验,知识迁移到怎样求出正方形的周长,就是把正方形的四条边长加起来,还可以用边长乘4。

2、做一做中出现的两个正方形周长的计算,可以放手让学生用自己喜欢的方法去解决。

3、练一练中的第2小题要让学生明确求篱笆长多少米,就是在求正方形实验园地的周长。

第五课时 练习六

【知识点】:

1、练习六中的1——8小题通过计算各种图形的不同周长,进一步巩固学生已经掌握的计算周长的方法。

而第9小题则是让学生发现图形之间的变化关系,从而发现这四幅图形的周长是相等的。

2、在实践活动中,可以让学生先计算三个周长的大小,并说出估计的过程或理由,然后再让学生自主选择测量工具和测量方式。可以独立测量,也可以是小组合作进行,最后组织学生对其估计和测量的结果进行对比,修正自己的估计和测量的结果。

第六课时 交通与数

【知识点】:

在这节实践活动课中,要引导学生认真仔细的观察图片中的数学信息,从而运用周长、乘除法、搭配方法等数学知识和方法来解决实际生活中的简单问题。

小学数学知识点总结归纳 篇4

主要内容

求一个数比另一个数多(少)百分之几、纳税问题

学习目标

1、使学生在现实情境中,理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。

2、使学生在探索“求一个数比另一个数多(少)百分之几”方法的过程中,进一步加深对百分数的理解,体会百分数与日常生活的密切联系,增强自主探索和合作交流的意识,提高分析问题和解决问题的能力。

3、使学生初步认识纳税和税率,理解和掌握应纳税额的计算方法。

4、初步培养学生的纳税意识,继续感知数学就在身边,提高知识的应用能力。

5、培养和解决简单的实际问题的能力,体会生活中处处有数学。

考点分析

1、一个数比另一个数多(少)百分之几 = 一个数比另一个数多(少)的量÷另一个数。

2、应该缴纳的税款叫做应纳税额,应纳税额与各种收入的比率叫做税率,应纳税额 = 收入 × 税率

点评:想一想,在分数乘法应用题中的最基本的数量关系式:“单位1 × 分率 = 分率对应的量”,如果和百分数应用题结合起来,求一种量比另一种量多(少)百分之几,实际上就是求分率。就用“多(少)的量 ÷ 单位1”。

例3、(难点突破)

一筐苹果比一筐梨重20%,那么一筐梨就比一筐苹果轻20%

分析与解:苹果比梨重20%,表示苹果比梨重的部分占梨的20%,把梨的质量看作单位“1”;而梨比苹果轻20%则表示梨比苹果轻的部分占苹果的20%,把苹果的质量看作单位“1”,两个单位“1”不同,切忌将两个问题混为一谈。一筐苹果比一筐梨重20%,是把梨看作单位“1”,梨有100份,苹果就是100 + 20 = 120份;一筐梨比一筐苹果轻百分之几 = 一筐梨比一筐苹果轻的部分 ÷ 苹果 = (120 - 100)÷ 120≈16.7%

答:一筐苹果比一筐梨重20%,那么一筐梨就比一筐苹果轻16.7%

点评:在求一个数比另一个数多(少)百分之几的百分数应用题中,关键还是要找准单位“1”的量。从结论可以得出“一个数比另一个数多百分之几,另一个数就比一个数少百分之几。”这句话是错的。为什么呢?把两个百分之几比较一下,就可以得出这两个百分之几对应的量是一个数比另一个数多的量或另一个数比一个数少的量,而这两种说法是相同的,也就表示的是同一个量;而单位“1”一个是梨,一个是苹果,所以这两个百分之几是不可能相等的。

例4、(考点透视)

一种电子产品,原价每台5000元,现在降低到3000元。降价百分之几?

分析与解:降低到3000元,即现价为3000元,说明降低了2000元。求降价百分之几,就是求降低的价格占原价的百分之几。

5000 – 3000 = 2000(元)

2000 ÷ 5000 = 40%

答:降价40﹪。

例7、(和应纳税额有关的简单实际问题)

王叔叔买了一辆价值16000元的摩托车。按规定,买摩托车要缴纳10%的车辆购置税。王叔叔买这辆摩托车一共要花多少钱?

分析与解:王叔叔买这辆摩托车所需的钱应包含购买价和10%的车辆购置税两部分,而车辆购置税是占摩托车购买价的10%,可先算出要缴纳的车辆购置税。也可以这样想:车辆购置税占购买价的10%,把购买价看作单位“1”,王叔叔买这辆摩托车所需的钱相当于购买价的(1 + 10%),即求16000元的110%是多少,也用乘法计算。

方法1:16000 ×10% + 16000 = 1600 + 16000 = 17600(元)

方法2:16000 ×(1 + 10%) = 16000 ×1.1 = 17600(元)

答:王叔叔买这辆摩托车一共要花17600元钱。

例8、扬州某风景区2007年“十一”黄金周接待游客9万人次,门票收入达270

万元。按门票的5%缴纳营业税计算,“十一”黄金周期间应缴纳营业税0.45万元。

分析与解:营业税是按门票的5%缴纳,是占门票收入的5%,而不是占游客人数的5%

答:“十一”黄金周期间应缴纳营业税13.5万元。

模拟试题一

一、填空。

1、篮球个数是足球的125%,篮球比足球多( )%,足球个数是篮球的( )%,足球个数比篮球少( )%。

2、排球个数比篮球多18%,排球个数相当于篮球的( )%。

3、足球个数比篮球少20%。排球个数比篮球多18%,( )球个数最多,( )球个数最少。

4、果园里种了60棵果树,其中36棵是苹果树。苹果树占总棵数的( )%,其余的果树占总棵数的( )%。

5、女生人数占全班的百分之几 = ( )÷ ( )

杨树的棵数比柏树多百分之几 = ( )÷ ( )

实际节约了百分之几 = ( )÷ ( )

比计划超产了百分之几 = ( )÷ ( )

6、20的40%是( ),36的10%是( ),50千克的60%是( )千克,800米的25%是( )米。

7、进口价a元的一批货物,税率和运费都是货物价值的10%,这批货物的成本是( )元。

二、解决实际问题

1、白兔有25只,灰兔有30只。灰兔比白兔多百分之几?

2、四美食盐厂上月计划生产食盐450吨,实际生产了480吨。实际比计划多生产了百分之几?

3、小明家八月份用电80千瓦时,小亮家比小明家节约10千瓦时,小亮家比小明家八月份节约用电百分之几?

4、某化肥厂9月份实际生产化肥5000吨,比计划超产500吨。比计划超产百分之几?

5、蓝天帽业厂去年收入总额达900万元,按国家的税率规定,应缴纳17%的增值税。一共要缴纳多少万元的增值税?

6、爸爸买了一辆价值12万元的家用轿车。按规定需缴纳10%的车辆购置税。爸爸买这辆车共需花多少钱?

小学数学知识点总结归纳 篇5

(一)口算除法

1、整十数除整十数或几百几十的数的口算方法。

(1)算除法,想乘法;比如60÷30=( )就可以想(2)×30=60

(2)利用表内除法计算。利用除法运算的性质:将被除数和除数同时扩大或缩小相同的倍数,商不变。如:200÷50想20÷5=4,所以200÷50=4。

2、两位数除两位数或三位数的估算方法:除法估算一般是把算式中不是整十数或几百几十的数用“四舍五入”法估算成整十数或几百几十的数,再进行口算。注意结果用“≈”号。

(二)笔算除法

1、除数是两位数的笔算除法计算方法:从被除数的高位除起,先用除数试除被除数的前两位,如果前两位数比除数小,就看前三位。除到被除数的哪一位,商就写在那一位的上面。每次除后余下的数必须比除数小。

2、除数不是整十数的'两位数的除法的试商方法:如果除数是一个接近整十数的两位数,就用“四舍五入”法把除数看做与它接近的整十数试商,也可以把除数看做与它接近的几十五,再利用一位数的乘法直接确定商。

3、商一位数:

(1)两位数除以整十数,如:62÷30;

(2)三位数除以整十数,如:364÷70

(3)两位数除以两位数,如:90÷29(把29看做30来试商)

(4)三位数除以两位数,如:324÷81(把81看做80来试商)

(5)三位数除以两位数,如:104÷26(把26看做25来试商)

(6)同头无除商八、九,如:404÷42(被除数的位和除数的位一样,即“同头”,被除数的前两位除以除数不够除,即“无除”,不是商8就是商9。)

(7)除数折半商四五,如:252÷48(除数48的一半24,和被除数的前两位25很接近,不是商4就是商5。)

4、商两位数:(三位数除以两位数)

(1)前两位有余数,如:576÷18

(2)前两位没有余数,如:930÷31

5、判断商的位数的方法:

被除数的前两位除以除数不够除,商是一位数;被除数的前两位除以除数够除,商是两位数。

(三)商的变化规律

1、商变化:

(1)被除数不变,除数乘(或除以)几(0除外),商就除以(或乘)相同的数。

(2)除数不变,被除数乘(或除以)几(0除外)商也乘(或除以)相同的数。

2、商不变:被除数和除数同时乘(或除以)相同的数(0除外),商不变。

(四)简便计算:同时去掉同样多的0,如9100÷700=91÷7=13

小学数学知识点总结归纳 篇6

一、圆的特征

1、圆是平面内封闭曲线围成的平面图形。

2、圆的特征:外形美观,易滚动。

3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。

圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。

半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。

直径d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。

同圆或等圆内直径是半径的2倍:d=2r或r=d÷2

4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。同心圆:圆心重合、半径不等的两个圆叫做同心圆。

5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。

有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。

有二条对称轴的图形:长方形

有三条对称轴的图形:等边三角形

有四条对称轴的图形:正方形

有无条对称轴的图形:圆,圆环

6、画圆

(1)圆规两脚间的距离是圆的半径。

(2)画圆步骤:定半径、定圆心、旋转一周。

二、圆的周长:

围成圆的曲线的长度叫做圆的周长,周长用字母C表示。

1、圆的周长总是直径的三倍多一些。

2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

即:圆周率π=周长÷直径≈3.14

所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd,c=2πr

圆周率π是一个无限不循环小数,3.14是近似值。

3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。

4、半圆周长=圆周长一半+直径=πr+d

三、圆的面积s

1、圆面积公式的推导

如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。

圆的半径=长方形的宽

圆的周长的一半=长方形的长

长方形面积=长×宽

所以:圆的面积=圆的周长的.一半(πr)×圆的半径(r)

S圆=πr×r=πr2

2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则,而长方形的面积则最小。

周长相同时,圆面积,利用这一特点,篮子、盘子做成圆形。

3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。

4、环形面积=大圆–小圆=πR2-πr2

扇形面积=πr2×n÷360(n表示扇形圆心角的度数)

5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。

一个圆的半径增加a厘米,周长就增加2πa厘米。

一个圆的直径增加b厘米,周长就增加πb厘米。

6、任意一个正方形的内切圆即圆的直径是正方形的边长,它们的面积比是4∶π。

7、常用数据

π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7

小学数学知识点总结归纳 篇7

1、对长方形、正方形、三角形和圆的认识,能分辨出四种基本的.图形。

2、学会观察,能在生活中找出基本的形状,会举例。

3、能区分出面和体的关系,体会“面在体上”。

4、能找出一组图形的规律。

5、能在复杂的图案中找出基本的图形。

小学数学知识点总结归纳 篇8

一、知识框架

一级知识点数与代数二级知识点数的运算三级知识点

1、列竖式计算除法。

2、两位数除以一位数;

除法的验算

3、一步计算的问题

4、两步计算的问题

1、质量单位千克、克数与代数常见的量

2、千克、克之间的换算,简单的实际问题

3、24时计时法空间与图形空间与图形统计与概率图形的认识

从三个方向观察用小正方体搭成的立体图形形状

1.周长的认识

2.长方形、正方形的周长计算描述事件发生的可能性。

二、期末知识点

第一单元除法(除法是乘法的逆运算)

两位数除以一位数(商是两位数)的除法。是在二年级(上册)表内除法和二年级(下册)有余数除法的基础上安排的。

1.计算:列竖式计算除法。

2.口算:被除数十位和个位上的数分别除以除数都没有余数的除法,包括整十数除以一位数商是整十数。

3.笔算:两位数除以一位数;除法的验算(用乘法验算)。

4.估算:估计两位数除以一位数的商是几十多。

5.一步计算的问题:在解决的实际问题中体会数量关系。总价÷单价=数量总价÷数量=单价

6.两步计算的问题:先求总和或剩余是多少,再平均分的实际问题。

练习:

(1)用竖式计算,并验算:62÷266÷672÷347÷7

(2)口算:36÷360÷268÷290÷3

(3)列竖式计算:39÷389÷467÷274÷3

(4)你能估算下面各题的商各是几十多吗?64÷584÷395÷481÷3

(5)王老师用72元买笔记本,如果每本单价是2元,那么能买多少本?李老师用60元买了20本笔记本,那么每本笔记本多少钱?

(6)一副乒乓球拍26元,一个乒乓球2元,用50元买一副乒乓球拍,剩下的钱能够买几个乒乓球?第二单元认数1.认数、读数、写数。

整千数:数位与顺序,认、读、写数,口算整千数的加、减法,解决实际问题。非整千数:认、读、写数,口算整千数加整百数及相应的减法,按顺序整理数。

练习:

(1)口算:201+4000800030006000201000+100

(2)写一写:两个千加两个百加一个十是多少?

(3)三千零二是由几个千和几个一组成?

(4)9670是()位数,它的最高位是()位,7在()位上,个位上是()。

2.大小比较

比较大小时的数学思考,比较大小的实际应用,非整千数最接近几千。

练习:

比较大小:3650和2520,7890和8790第三单元千克和克

千克和克都是质量单位,物体含有物质的多少是它的质量。我国人民在生活中习惯以“物体有多重”代替“质量是多少”,因此没有使用“质量”这个词,仍然讲“有多重”。

1.称一个物体有多重,一般用千克为单位。

2.净含量是指包装袋内物品实际有多重。

3.千克可以用KG表示,又叫公斤。

4.从秤上读出物品的重量。

5.称比较轻的物品,一般用克为单位。

6.认识天平。

7.千克和克之间的关系。1千克=1000克。

练习

(1)一袋盐重500克,两袋盐重()克?

(2)2千克=()克

(3)9000克=()千克第四单元加和减

1.口算两位数加、减。解决与“倍”或“差”有关的两步计算实际问题。

练习

口算:44+2532+5714+6876642.画线段图解决问题。

练习

手套的价格是12元,帽子的价格是手套的3倍,你能用线段画出来并算出帽子是多少钱吗?第五单元24时记时法。

1.24时记时法及它与普通记时法(12时记时法)的联系

2.联系实际问题求经过时间的基本思路与方法。包括:求整时到整时的经过时间,求非整点时刻间的经过时间。(利用线段图)。

求经过时间:

记忆:结束时刻开始时刻=经过时间到达的时刻出发的时刻=经过时间3.两种计时方式的转化。

普通记时法与24时记时法的互相转化普通记时法24时记时法凌晨1时1时

早晨5时5时上午8时8时中午12时12时下午1时13时下午2时14时晚上6时18时晚上7时19时晚上8时20时晚上9时21时

深夜12时24时(也是第二天的0时)

记忆:中午12时以后的时刻,用24时记时法表示,就用钟面上的时刻加上12时。中午12时以后的时刻,用普通记时法表示,就用时刻减去12时。

练习

(1)图书馆的的公告牌上面写着:借书时间:12:0013:30,15:4017:00。图书馆每天的借书时间是多长?

(2)用二十四小时计时法表示,:下午2:00,晚上9:00第六单元长方形和正方形

1.认识长方形和正方形。掌握长方形、正方形的边与角有什么特点。(长方形对边相等,四个角都是直角。正方形每条边都相等,四个角都是直角。通常把长方形的长边叫做长,短边叫做宽。把正方形的'每一条边都叫做边长。)

2.探索、理解周长的含义及计算方法。计算长方形和正方形的周长。(物体某个面上一周边线的长度就是该物体某个面的周长)。

练习

(1)篮球场长26米,宽14米,求篮球场的周长。

(2)操场长150米,宽70米,小强绕操场跑一周,小强一共跑了多少米?

第七单元乘法

1.三位数乘一位数的基本方法。(在二年级下册已经学习了两位数乘一位数)

2.三位数的中间或末尾是0时的乘法计算。3.连乘计算。练习:

(1)200×3152×4261×3224×5(2)124×3×2115×2×4

(3)一头牛一天吃20千克草,两头牛两天吃多少千克草?

第八单元观察物体

安排过一次“观察物体”,从物体(玩具、茶壶、汽车等)的前面、后面、左面、右面观察,并选择适宜的图形表示看到的物体的形状。本单元学习“观察物体”,从物体的正面、侧面和上面观察,并用视图表示看到的形状。

1.在知道物体的前面、后面、左面、右面的基础上,认识物体的正面、侧面和上面。

2.在不同的位置观察,看到的物体的面的个数往往是不相同的。

3.进行简单几何体与其三视图之间的转化。

第九单元统计与可能性

学习简单的统计知识。

练习

(1)在一个口袋里放3个红球,一个黄球,从袋子里任意摸一个球,摸到红球的可能性大还是摸到黄球的可能性大?

第十单元认识分数

理解分数的意义,认、读、写简单的分数,同分母分数(分母小于10)的加减计算。

1.分数的表示:分子、分母、分数线。

2.同分母分数比较大小。

3.同分母分数的加减。

小学数学知识点总结归纳 篇9

一、学习目标:

1.知道生活中有比万大的数;认识计数单位“万、十万、百万、千万和亿”,类推每相邻两个计数单位之间的关系,知道数级、数位;

2使学生认识射线,直线,能识别射线、直线和线段三个概念之间的联系和区别;认识角和角的表示方法,知道角的各部分名称;

3,在理解的基础上,掌握整数乘法的口算方法;培养类推迁移的能力和口算的能力;

4.结合生活情境,通过自主探究活动,初步认识平行线、垂线;独立思考能力与合作精神得到和谐发展;

5.在理解的基础上,掌握用整十数除商是一位数的口算方法;培养类推迁移的能力和抽象概括的能力。

二、学习难点:

1.认识计数单位“万、十万、百万、千万和亿”;掌握每相邻两个计数单位之间的关系;

2.角的意义;射线、直线和线段三者之间的关系;

3.掌握整数乘法的口算方法;培养学生养成认真思考的良好学习习惯;

4.初步认识平行线与垂线;理解永不相交的含义;

5.掌握用整十数除商是一位数的口算方法;培养学生养成认真计算的良好学习习惯。

三、知识点概括总结:

1.亿以内的数的认识:

十万:10个一万;

一百万:10个十万;

一千万:10个一百万;

一亿:10个一千万。

2.数级:数级是为便于人们记读阿拉伯数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。

通常在阿拉伯数的书写上,以小数点或者空格作为各个数级的标识,从右向左把数分开。

3.数级分类:

(1)四位分级法:即以四位数为一个数级的.分级方法。

我国读数的习惯,就是按这种方法读的。如:万(数字后面4个0)、亿(数字后面8个0)、兆(数字后面12个0,这是中法计数)……。这些级分别叫做个级,万级,亿级……。

(2)三位分级法:即以三位数为一个数级的分级方法。

这西方的分级方法,这种分级方法也是国际通行的分级方法。如:千,数字后面3个0、百万,数字后面6个0、十亿,数字后面9个0……。

4.数位:数位是指写数时,把数字并列排成横列,一个数字占有一个位置,这些位置,都叫做数位。

从右端算起,第一位是“个位”,第二位是“十位”,第三位是“百位”,第四位是“千位”,第五位是“万位”,等等。

这就说明计数单位和数位的概念是不同的。

5.数的产生:

阿拉伯数字的由来:古代印度人创造了阿拉伯数字后,大约到了公元7世纪的时候,这些数字传到了阿拉伯地区。到13世纪时,意大利数学家斐波那契写出了《算盘书》,在这本书里,他对阿拉伯数字做了详细的介绍。后来,这些数字又从阿拉伯地区传到了欧洲,欧洲人只知道这些数字是从阿拉伯地区传入的,所以便把这些数字叫做阿拉伯数字。以后,这些数字又从欧洲传到世界各国。

阿拉伯数字传入我国,大约是13到14世纪。由于我国古代有一种数字叫“筹码”,写起来比较方便,所以阿拉伯数字当时在我国没有得到及时的推广运用。本世纪初,随着我国对外国数学成就的吸收和引进,阿拉伯数字在我国才开始慢慢使用,阿拉伯数字在我国推广使用才有100多年的历史。阿拉伯数字现在已成为人们学习、生活和交往中最常用的数字了。

小学数学知识点总结归纳 篇10

1.分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。

2.分数单位:把单位“1”平均分成若干份,表示其中一份的数,叫做分数单位。

3.分数和除法的联系:分数的分子就是除法中的被除数,分母就是除法中的除数。

分数和小数的联系:小数实际上就是分母是10、100、1000……的分数。

分数和比的联系:分数的分子就是比的前项,分数的分母就是比的`后项。

4.分数的分类:分数可以分为真分数和假分数。

5.真分数:分子小于分母的分数叫做真分数。真分数小于1。

假分数:分子大于或等于分母的分数叫做假分数。假分数大于或者等于1。

6.最简分数:分子与分母互质的分数叫做最简分数。

7.分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。

8.这样的分数可以化成有限小数:前提是这

个分数要是最简分数,如果分母只含有2、5这2个质因数,这样的分数就能化成有限小数。

9.百分数:表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫做百分率或者百分比。百分数通常用“%”来表示。

小学数学知识点总结归纳 篇11

(一)笔算两位数加法,要记三条

1、相同数位对齐;

2、从个位加起;

3、个位满10向十位进1。

(二)笔算两位数减法,要记三条

1、相同数位对齐;

2、从个位减起;

3、个位不够减从十位退1,在个位加10再减。

(三)混合运算计算法则

1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;

2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;

3、算式里有括号的要先算括号里面的。

(四)四位数的读法

1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;

2、中间有一个0或两个0只读一个“零”;

3、末位不管有几个0都不读。

(五)四位数写法

1、从高位起,按照顺序写;

2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。

(六)四位数减法也要注意三条

1、相同数位对齐;

2、从个位减起;

3、哪一位数不够减,从前位退1,在本位加10再减。

(七)一位数乘多位数乘法法则

1、从个位起,用一位数依次乘多位数中的每一位数;

2、哪一位上乘得的积满几十就向前进几。

(八)除数是一位数的除法法则

1、从被除数高位除起,每次用除数先试除被除数的前一位数,如果它比除数小再试除前两位数;

2、除数除到哪一位,就把商写在那一位上面;

3、每求出一位商,余下的数必须比除数小。

(九)一个因数是两位数的乘法法则

1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;

2、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;

3、然后把两次乘得的数加起来。

(十)除数是两位数的除法法则

1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,

2、除到被除数的哪一位就在哪一位上面写商;

3、每求出一位商,余下的数必须比除数小。

(十一)万级数的读法法则

1、先读万级,再读个级;

2、万级的数要按个级的读法来读,再在后面加上一个“万”字;

3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。

(十二)多位数的读法法则

1、从高位起,一级一级往下读;

2、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;

3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。

(十三)小数大小的比较

比较两个小数的大小,先看它们整数部分,整数部分大的那个数就大,整数部分相同的,十分位上的数大的那个数就大,十分位数也相同的,百分位上的数大的那个数就大,依次类推。

(十四)小数加减法计算法则

计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。

(十五)小数乘法的计算法则

计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。

(十六)除数是整数除法的法则

除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。

(十七)除数是小数的除法运算法则

除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。

(十八)解答应用题步骤

1、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;

2、确定每一步该怎样算,列出算式,算出得数;

3、进行检验,写出答案。

(十九)列方程解应用题的一般步骤

1、弄清题意,找出未知数,并用X表示;

2、找出应用题中数量之间的相等关系,列方程;

3、解方程;

4、检验、写出答案。

(二十)同分母分数加减的法则

同分母分数相加减,分母不变,只把分子相加减。

(二十一)同分母带分数加减的法则

带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。

(二十二)异分母分数加减的法则

异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。

(二十三)分数乘以整数的计算法则

分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。

(二十四)分数乘以分数的计算法则

分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。

(二十五)一个数除以分数的计算法则

一个数除以分数,等于这个数乘以除数的倒数。

(二十六)把小数化成百分数和把百分数化成小数的方法

把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;

把百分数化成小数,把百分号去掉,同时小数点向左移动两位。

(二十七)把分数化成百分数和把百分数化成分数的方法

把分数化成百分数,通常先把分数化成小数(除不尽通常保留三位小数),再把小数化成百分数;

把百分数化成小数,先把百分数改写成分母是100的分数,能约分的要约成最简分数。

【小学数学口决定义归类】

1、什么是图形的周长?

围成一个图形所有边长的总和就是这个图形的周长。

2、什么是面积?

物体的表面或围成的平面图形的大小叫做他们的面积。

3、加法各部分的关系:

一个加数=和—另一个加数

4、减法各部分的关系:

减数=被减数—差被减数=减数+差

5、乘法各部分之间的关系:

一个因数=积÷另一个因数

6、除法各部分之间的关系:

除数=被除数÷商被除数=商×除数

7、角

(1)什么是角?

从一点引出两条射线所组成的图形叫做角。

(2)什么是角的顶点?

围成角的端点叫顶点。

(3)什么是角的边?

围成角的射线叫角的边。

(4)什么是直角?

度数为90°的角是直角。

(5)什么是平角?

角的两条边成一条直线,这样的角叫平角。

(6)什么是锐角?

小于90°的角是锐角。

(7)什么是钝角?

大于90°而小于180°的角是钝角。

(8)什么是周角?

一条射线绕它的端点旋转一周所成的角叫周角,一个周角等于360°。

8、(1)什么是互相垂直?什么是垂线?什么是垂足?

两条直线相交成直角时,这两条线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

(2)什么是点到直线的距离?

从直线外一点向一条直线引垂线,点和垂足之间的.距离叫做这点到直线的距离。

9、三角形

(1)什么是三角形?

有三条线段围成的图形叫三角形。

(2)什么是三角形的边?

围成三角形的每条线段叫三角形的边。

(3)什么是三角形的顶点?

每两条线段的交点叫三角形的顶点。

(4)什么是锐角三角形?

三个角都是锐角的三角形叫锐角三角形。

(5)什么是直角三角形?

有一个角是直角的三角形叫直角三角形。

(6)什么是钝角三角形?

有一个角是钝角的三角形叫钝角三角形。

(7)什么是等腰三角形?

两条边相等的三角形叫等腰三角形。

(8)什么是等腰三角形的腰?

有等腰三角形里,相等的两个边叫做等腰三角形的腰。

(9)什么是等腰三角形的顶点?

两腰的交点叫做等腰三角形的顶点。

(10)什么是等腰三角形的底?

在等腰三角形中,与其它两边不相等的边叫做等腰三角形的底。

(11)什么是等腰三角形的底角?

底边上两个相等的角叫等腰三角形的底角。

(12)什么是等边三角形?

三条边都相等的三角形叫等边三角形,也叫正三角形。

(13)什么是三角形的高?什么叫三角形的底?

从三角形的一个顶点向它的对边引一条垂线,顶点和垂足之间的线段叫做三角形的高,这个顶点的对边叫三角形的底。

(14)三角形的内角和是多少度?

三角形内角和是180°。

10、四边形

(1)什么是四边形?

有四条线段围成的图形叫四边形。

(2)什么是平等四边形?

两组对边分别平行的四边形叫做平行四边形。

(3)什么是平行四边形的高?

从平行四边形一条边上的一点到对边引一条垂线,这个点和垂足之间的线段叫做四边形的高。

(4)什么是梯形?

只有一组对边平行的四边形叫做梯形。

(5)什么是梯形的底?

在梯形里互相平等的一组边叫梯形的底(通常较短的底叫上底,较长的底叫下底)。

(6)什么是梯形的腰?

在梯形里,不平等的一组对边叫梯形的腰。

(7)什么是梯形的高?

从上底的一点往下底引一条垂线,这个点和垂足之间的线段叫做梯形的高。

(8)什么是等腰梯形?

两腰相等的梯形叫做等腰梯形。

11、什么是自然数?

用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10……是自然数(自然数都是整数)。

12、什么是四舍五入法?

求一个数的近似数时,看被省略的尾数位上的数是几,如果是4或者比4小,就把尾数舍去,如果是5或者比5大,去掉尾数后,要在它的前一位加1。这种求近似数的方法,叫做四舍五入法。

13、加法意义和运算定律

(1)什么是加法?

把两个数合并成一个数的运算叫加法。

(2)什么是加数?

相加的两个数叫加数。

(3)什么是和?

加数相加的结果叫和。

(4)什么是加法交换律?

两个数相加,交换加数的位置后,它的和不变,这叫做加法交换律。

14、什么是减法?

已知两个数的和与其中的一个加数,求另一个加数的运算叫做减法。

15、什么是被减数?什么是减数?什么叫差?

在减法中已知的和叫被减数,减去的已知数叫减数,所求的未知数叫差。

16、加法各部分间的关系:

和=加数+加数加数=和—另一加数

17、减法各部分间的关系:

差=被减数—减数减数=被减数—差被减数=减数+差

18、乘法

(1)什么是乘法?

求几个相同加数的和的简便运算叫乘法。

(2)什么是因数?

相乘的两个数叫因数。

(3)什么是积?

因数相乘所得的数叫积。

(4)什么是乘法交换律?

两个因数相乘,交换因数的位置,它们的积不变,这叫乘法交换律。

(5)什么是乘法结合律?

三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变,这叫乘法结合律。

19、除法

(1)什么是除法?

已知两个因数的积与其中的一个因数,求另一个因数的运算叫除法。

(2)什么是被除数?

在除法中,已知的积叫被除数。

(3)什么是除数?

在除法中,已知的一个因数叫除数。

(4)什么是商?

在除法中,求出的未知因数叫商。

20、乘法各部分的关系:

积=因数×因数一个因数=积÷另一个因数

21、(1)除法各部分间的关系:

商=被除数÷除数除数=被除数÷商

(2)有余数的除法各部分间的关系:

被除数=商×除数+余数

22、什么是名数?

通常量得的数和单位名称合起来的数叫名数。

23、什么是单名数?

只带有一个单位名称的数叫单名数。

24、什么是复名数?

有两个或两个以上单位名称的数叫复名数。

25、什么是小数?

仿照整数的写法,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数叫小数。

26、什么是小数的基本性质?

小数的末尾添上零或者去掉零,小数大小不变,这叫小数的基本性质。

27、什么是有限小数?

小数部分的位数是有限的小数叫有限小数。

28、什么是无限小数?

小数部分的位数是无限的小数叫无限小数。

29、什么是循环节?

一个循环小数的部分依次不断重复出现的数叫做这个数的循环节。

30、什么是纯循环小数?

循环节从小数第一位开始的叫纯循环小数。

31、什么是混循环小数?

循环节不是从小数部分第一位开始的叫做混循环小数。

32、什么是四则运算?

我们把学过的加、减、乘、除四种运算统称四则运算。

33、什么是方程?

含有未知数的等式叫方程。

34、什么是解方程?

求方程解的过程叫解方程。

35、什么是倍数?什么叫约数?

如果a能被b整除,a就是b的倍数,b就叫a的约数(或a的因数)。

36、什么样的数能被2整除?

个位上是0、2、4、6、8的数都能被2整除。

37、什么是偶数?

能被2整除的数叫偶数。

38、什么是奇数?

不能被2整除的数叫奇数。

39、什么样的数能被5整除?

个位上是0或5的数能被5整除。

40、什么样的数能被3整除?

一个数的各位上的和能被3整除,这个数就能被3整除。

41、什么是质数(或素数)?

一个数如果只有1和它本身两个约数,这样的数叫质数。

42、什么是合数?

一个数除了1和它本身还有别的约数,这样的数叫合数。

43、什么是质因数?

每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数。

44、什么是分解质因数?

把一个合数用质因数相乘的形式表示出来叫做分解质因数。

45、什么是公约数?什么叫公约数?

几个数公有的约数叫公约数。其中的一个叫公约数。

46、什么是互质数?

公约数只有1的两个数叫互质数。

47、什么是公倍数?什么是最小公倍数?

几个数公有的倍数叫这几个数的公倍数。其中最小的一个叫这几个数的最小公倍数。

48、分数

(1)什么是分数?

把单位1平均分成若干份,表示这样的一份或者几份的数叫分数。

(2)什么是分数线?

在分数里中间的横线叫分数线。

(3)什么是分母?

分数线下面的部分叫分母。

(4)什么是分子?

分数线上面的部分叫分子。

(5)什么是分数单位?

把单位“1”平均分成若干份,表示其中的一份叫分数单位。

49、怎么比较分数大小?

(1)分母相同的两个分数,分子大的分数比较大。

(2)分子相同的两个分数,分母小的分子比较大。

(3)什么是真分数?

分子比分母小的分数叫真分数。

(4)什么是假分数?

分子比分母大或者分子和分母相等的分数叫假分数。

(5)什么是带分数?

由整分数和真分数合成的数通常叫带分数。

(6)什么是分数的基本性质?

分数的分子和分母同时乘或除以相同的数(0除外),分数大小不变,这就是分数的基本性质。

(7)什么是约分?

把一个分数化成同它相等,但分子、分母都比较小的数叫做约分。

(8)什么是最简分数?

分子、分母是互质数的分数叫最简分数。

50、比

(1)什么是比?

两个数相除又叫两个数的比。

(2)什么是比的前项?

比号前面的数叫比的前项。

(3)什么是比的后项?

比号后面的数叫比的后项。

(4)什么是比值?

比的前项除以后项所得的商叫比值。

(5)什么是比的基本性质?

比的前项和后项同时乘以或者同时除以相同的数(0除外)比值不变,这叫比的基本性质。

51、长方体和正方体

(1)什么是棱?

两个面相交的边叫棱。

(2)什么是顶点?

三条棱相交的点叫顶点。

(3)什么是长方体的长、宽、高?

相交于一个顶点的三条棱的长度分别叫长方体的长、宽、高。

(4)什么是正方体(立方体)?

长宽高都相等的长方体叫正方体(或立方体)。

(5)什么是长方体的表面积?

长方体_个面的总面积叫长方体的表面积。

(6)什么是物体体积?

物体所占空间的大小叫做物体的体积。

52、圆

(1)什么是圆心?

圆中心的点叫圆心。

(2)什么是半径?

连接圆心和圆上任意一点的线段叫半径。

(3)什么是直径?

通过圆心、并且两端都在圆上的线段叫直径。

(4)什么是圆的周长?

围成圆的曲线叫圆的周长。

(5)什么是圆周率?

我们把圆的周长和直径的比值叫圆周率。

(6)什么是圆的面积?

圆所围平面的大小叫圆的面积。

(7)什么是扇形?

一条弧和经过这条弧两端的两条半径所围成的图形叫扇形。

(8)什么是弧?

在圆上两点之间的部分叫弧。

(9)什么是圆心角?

顶点在圆心上的角叫圆心角。

(10)什么是对称图形?

如果一个图形沿着一条直线对折,两侧图形能够完全重合,这样的图形就是对称图形。

小学数学知识点总结归纳 篇12

■用字母表示数

用字母表示数是代数的基本特点.既简单明了,又能表达数量关系的一般规律.

■用字母表示数的注意事项

1、数字与字母、字母和字母相乘时,乘号可以简写成““或省略不写.数与数相乘,乘号不能省略.

2、当1和任何字母相乘时,“ 1”省略不写.

3、数字和字母相乘时,将数字写在字母前面.

■含有字母的式子及求值

求含有字母的式子的值或利用公式求值,应注意书写格式

■等式与方程

表示相等关系的.式子叫等式.

含有未知数的等式叫方程.

判断一个式子是不是方程应具备两个条件:一是含有未知数;二是等式.所以,方程一定是等式,但等式不一定是方程.

■方程的解和解方程

使方程左右两边相等的未知数的值,叫方程的解.

求方程的解的过程叫解方程.

■在列方程解文字题时,如果题中要求的未知数已经用字母表示,解答时就不需要写设,否则首先演将所求的未知数设为x.

■解方程的方法

1、直接运用四则运算中各部分之间的关系去解.如x-8=12

加数+加数=和一个加数=和-另一个加数

被减数-减数=差减数=被减数-差被减数=差+减数

被乘数×乘数=积一个因数=积÷另一个因数

被除数÷除数=商除数=被除数÷商被除数=除数×商

2、先把含有未知数x的项看作一个数,然后再解.如3x+20=41

先把3x看作一个数,然后再解.

3、按四则运算顺序先计算,使方程变形,然后再解.如2.5×4-x=4.2,

要先求出2.5×4的积,使方程变形为10-x=4.2,然后再解.

4、利用运算定律或性质,使方程变形,然后再解.如:2.2x+7.8x=20

先利用运算定律或性质使方程变形为(2.2+7.8)x=20,然后计算括号里面使方程变形为10x=20,最后再解.

本文来源:http://www.chubao5.com/zhufuyu/5022.html